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PREFACE 

This Memorandum presents the results of oomputatlonal 

experience vtith certain variations on the  "simplex method'1 

of solving linear programming problems.    The purpose of 

this study Is to establish a basis for comparison of the 

efficiencies  of various  procedures In computation.     Re- 

search on linear programming is conducted as  part of The 

RAND Corporation's basic  studios  In mathematics. 

This Memorandum should be of particular Interest to 

those concerned with linear programming and of general 

interest to other mathematicians and computer specialists. 



SUMMARY 

This Memorandum summarizes the main results to date 

Of the SCEMP Project (Standardized Computational Experi- 

ments in Mathematical Programming), Involving the solution 

ol' nine linear programming problems using 30 variations 

of the simplex method. The statistics collected allow 

comparison of most of the variations which have been 

proposed In recent years and indicate the important fea- 

tures In the efficiency of linear programming routines. 
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I. INTRODUCTION 

There are many ways to solve linear programming 

problems. The earliest of these, Dantzlg's "simplex 

method,"* ' is the most widely used and no equally ef- 

fective alternative is available. Many variations of 

the original simplex method have been proposed in the 

last few years. Computational experience seems to us 

the only way to properly compare the computational ef- 

ficiencies of the variations; their behavior depends so 

strongly on features of the process which cannot be 

known in advance that a priori estimates of their ef- 

fectiveness inspire little confidence. The purpose of 

the work reported here has been to compare some of the 

outstanding variations with each other in their work on 

actual linear programming problems, and to set some bench 

marks against which other procedures may be measured. 

Under the Mtle of "SCEMP"—Standardized Compu- 

tational Experiments in Mathematical Programming—this 

work originated in i960 at a meeting of the Linear Pro- 

gramming Committee of the SHARE organization (IBM 704- 

709-7090 users group), when it was suggested that some 

of the linear programming routines then forthcoming might 

serve the task of evaluating the procedures that had been 

discussed. The Committee maintains a file of problems 

from which those used here were selected; they are de- 

scribed in detail in the next section. A set of 



atatlstlc-collecting routines, modeled on an all-ln- 

core, PORTRAN-coded linear prograjtunlng routine for the 

IBM 704 and 7090^ ' was coded and served as the basis 

for the computer routines used In the present tests. 

(The routines and the output of the tests have been re- 

tained and can be made available, but the routines are 

not recominended for general purposes.) 

The nature of the output of these routines has been 

given In detail elsewhere.^-5' Briefly, It consists in 

the following quantities for each simplex method iter- 

ation: the amount of infeaslbillty, the current value of 

the objective, tht pivot row and column, the determinant 

of the basis, the number of product-form transformation 

entries, the number of arithmetic operations performed 

in each of several major subdivisions of an iteration, 

and the number of non-zero elements in certain arrays of 

interest.* At the end of a problem, the complete solu- 

tions are given as well as the "errors"—the extent to 

which the final solution fails of being both primal and 

dual feasible. All solutions obtained have been checked 

with those obtained by other routines on the same prob- 

lems,v ' and the statlatic-collectlng features have been 

checked in detail for most of the runs by hand calcu- 

lations of a small problem. 

See Sections III and VIII for definitions of terms 
used here. 



The experimental data are organized by "runs," each 

of which consists of the entire set of test problems, by 

means of a routine embodying a particular algorithm 

variation. Of the runs done 30 far In the SCEMP project, 

30 furnish the data used in this report; the others bear 

on matters not discussed here. Two kinds of data per- 

taining to a run have been used In this report: we 

consider the number of simplex method Iterations, or 

changes of basis, required to reach a certain end--clther 

the first feasible solution or the optimal solution of 

the problem (see Sections IV-VIl); and we discuss the 

total number of arithmetic operations required (see 

Sections VIII and IX). The Appendix lists the raw data 

from which the figures presented in the sequel have been 

calculated. 

Since the point of most of these experiments has 

been to compare alternative methods, the following 

general format has been use^ for ths results. The ap- 

propriate data (e.g., number of iterations) for a 

particular run are chosen as a base. In order to compare 

another run with the base, the datum obtained In the com- 

parison run for each of the test problems Is divided by 

the corresponding datum for the base run; the resulting 

ratio is the proportion in which the measure has been 

reduced by use of the compared procedure. For example, 

suppose that Algorithm I took 20 iterations to solve 
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problem ID and 30 to solve problem 2A; and that Algorithm 

II took Ik  and 24 Iterations, respectively. Choosing 

Algorithm I as the base, the comparative results would 

be given aa in Table 1-1. 

Table 1-1 

Algorithm II Compared with Algorithm I 

Problem     ID     2A       avg.     c.v. 

Alg. II    .70    .80       .75      .07 

Note that usually the average of the ratios is 

given, as well as their coefficient of variation (the 

standard deviation divided by the average). The prob- 

lems will be listed in order of their number of constraints. 

The ratios all have equal weights In the averaging, but 

the average could be viewed as an average of the data of 

the compared run weighted by the reciprocals of the cor- 

responding data of the base run.  For this reason, the 

average is a somewhat fairer measure when the data of 

the base are larger than those or  the compared run. 

Owing to the arithmetic of averaging, If II were chosen 

as the base and I as the compared run, the resulting 

average would be greater than the reciprocal of that of 

1-1. 

Some gaps appear in the tables that follow. The 

largest problem cannot be run on the routines using the 

standard form of the simplex method, and two other prob- 

lems were omitted from some "feasible solution" runs 
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because they had starting feasible solutions. 

A good deal of special terminology Is used In de- 

scribing the computations. Special terms are usually 

defined by context at their first appearance, which Is 

signaled In underlining. Most of them are Introduced 

in Sections III and VIII. While the terms "method" and 

"procedure" are used interchangeably in a very general 

way, we use the term algorithm to refer to any particu- 

lar version of the simplex method which chooses the 

pivot column and the pivot row in a particular manner, 

regardless of the way in which the data used in making 

the choice arj obtained. Thus Sections III to VII study 

only algorithms and the data--prlncipally operation 

counts—associated with them, while the remaining sec- 

tions study, in part, different methods of performing 

the same algorithm. 
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II.  THE PROBLEMS 

The linear programming problems on which cur ex- 

periments were conducted were drawn from the file of 

thirteen problems maintained by the Test Problems and 

Experiments Committee of the SHARE Linear Programming 

Project. The problems, submitted by various members of 

the Committee In 1959 and i960, were all used as pro- 

duction problems In their businesses; the majority arose 

In oil refining studies. None were especially construc- 

ted for test purposes, or thought "pathological." The 

original problems are available through the Committee. 

Four of the problems were not used here.  Problem 

1C is too small, 4A is too large, and 3A and 3B had 

awlcward input features. Thus our work was done with the 

nine problems of Table 2-1. 

Throughout this report the problems are listed In 

the order of their numbers of constraints. In Table 2-1, 

the "name" identifies a problem in the Committee's files. 

All the problems are formulated as problems of minimizing 

a linear objective function unaer linear equality con- 

straints; some problems have several alternative objective 

functions, so that there are always one or more "addi- 

tional rows." In our runs the highest-numbered objective 

row was used and the remainder Ignored. 

The "number of variables" Includes all the vari- 

ables of the problem but no "artificial" variables. The 
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"number of entries" Is the number of non-zero quantities 

appearing among the constraints and objectives. Some 

further data regarding, starting bases for the problema 

are given in Sec. IV. 

Table 2-1 

The Teat Problems 

Name ID 2A IE 1A 5A 10 IF 2B IB 
Number of con- 

straints: M 
27 30 31 33 34 48 66 96 117 

Number of ad- 
ditional 
rows: K 

1 2 8 1 1 1 1 3 1 

Number of vari- 
ables 

^5 103 106 64 78 102 135 162 253 

Number of 
entries 

252 811 855 245 391 462 644 897 1210 
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III■ TERMINOLOGY 

In order to describe the algorithms studied, we 

develop here some of the terminology connected with the 

aimplex method. It Is not Intended to discuss the pro- 

cedure itself, which Is done In many standard works. ^''' ' 

The discussion In this section Is entirely In terms of 

the standard form of the simplex method; the other forms 

are dealt with In Sec. VIII. 

Let a linear programming problem have N variables 

x-,,..,xN and M equation constraints. At any stage in 

the simplex method solution there Is defined a basis, 

which Is a set of M basic variables, say x. ,..,x.  ; 

let the remaining variables be x.  ,..,x, . The 
JM+1    JN 

current tableau Is the set of coefficients of the linear 

equations 

Xjl + ai1 XjM+l + "" + ai'N-M X^'hl   ' 

XJM 
+ aMl XJH+1   ...  XN-M XJN- 

bM ' 

which are uniquely defined by the current basis and the 

requirement that this set be equivalent to the linear 

equations defining the original problem. We say that 

the basic variable x.  occupies position 1 in the 

basis, for 1 = 1,..,M . 
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IL  Is  further supposed that the objective  I'unctlon 

to be minimized  Is expressed at this time  In terms of 

the nonbasic  variables as 

c,  x, +   • • •  + c„ M x .     + 2„   ; 
1   JM+I N

-
M
   

J
N      

0 

the coefficients c. ^re the reduced costs.  (The 

quantities a., and c. defined here commonly carry a 

superior bar to Indicate that they change In each Iter- 

ation; we omit the bar.) The basic solution of the 

equations above la obtained by sotting all nonbasic 

variables to zero, giving the basic variables the values 

x. = b, , etc., and the objective the value z . 

In a single Iteration of the simplex method a pivot 

column J  (where JM+T is the index of a nonbasic 

variable) and a pivot row I of the tableau are chosen, 

and the roles of the basic variable occupying position 

I and the nonbasic variable associated with column J 

are Interchanged, new data of the form of the equations 

above being obtained by pivoting on the entry aj. of 

the tableau. The value of the objective changes by the 

amount c» b, / a^j . 

Some M variables must be chosen as the starting 

basis for the procedure. If not all these variables 

belong to those of the original problem, the remainder 

are artificial. Each Instance of a basic variable whose 

nurrent value Is negative, or of an artificial variable 
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whose value Is not zero. Is an Infeaslblllty.  A basic 

solution having no Infeaslbllltles Is feasible.  When It 

la necessary to adjoin artificial variables In order to 

have a starting basis, we always adjoin for each a column 

of ooefflc'ents of the form [0,..,1,..,0l to the original 

problem, the single "l" of the column lying In a row cor- 

responding to an otherwise unoccupied position of the 

basis. When there are Infeaslbllltles, a separate ob- 

jective function Involving them is defined, and It Is 

required that this infeaslblllty objective be minimized. 

The process of minimizing that objective is Phase One; 

the subsequent m'nlmlzatlon of the proper objective, once 

a feasible solution is obtained, is Phase Two. 

In the sequel we refer to the ordinary simplex method, 

by which we mean the simplex method as most commonly pre- 

sented, except that we extend the usual procedure for the 

choice of pivot row to that of the "composite algorithm."^'' 

In Phase Two the procedure is quite ordinary. A 

pivot column J  is chosen so that Oj  is minimal (if all 

are non-negative, the current solution is optimal). Then 

the pivot row I is chosen so that after pivoting the cur- 

rent solution will still be non-negative: I is the 1 

which minimizes b, / a^ for all a^ > 0 .  If b, = 0— 

degeneracy--3hould happen, then I is chosen as the 1 

maximizing a., among all 1 for which b. = 0 ,  (This 

rule is not known to prevent "cycling," but is very ef- 

fective in practice.)' ' 
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In Phase One the objective is defined as the sum of 

the Infeaslbllltles:  £ {x. : x < 0 or x, artificial! 

The reduced cost for trie nonbasic variable J  Is then 

r fn  : b. < Ol - E fa., : b, > 0 and position 1 

artificial! . 

The pivot column J Is chosen for minimal reduced cost, 

and the pivot row I so that no variable r.on-neEative in 

the current solution becomes negative after pivoting: I 

is the 1 which achieves the smaller of the two ratios 

Min1 fb^j : b1 , a^ > o! , Max1 fV
aiJ : bl • aiJ < o! 

A somewhat moi'e complicated rule Is needed for degeneracy. 

In the absence of negative b, , the pivot-row rule oper- 

ates Just as in Phase Two. 
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IV.  STARTING BASES 

The ba3ls with which a problem Is started naturally 

has a great Inl'luence on the number of Iterations re- 

quired to solve it. In practice one often attempts to 

guess a starting basis which will be as nearly feasible 

and optimal as possible; a sophisticated routine will make 

good use of such a guess even If the basis is Incomplete, 

infeasible, or singular. The three methods studied here 

do not, of course, make any use of special information 

about the problem; they assume complete ignorance, and may 

be used with any problem. 

N basis: When no starting basis is specified, a full 

set of M artificial variables is adjoined to the problem 

and constitutes the starting basis. 

S basis: By singleton we mean a variable having 

only one non-zero entry, and that positive, in the equa- 

tions of the initial tableau. An S basis is a starting 

basis consisting of a maximal set of singletons, with 

artificial variables use:1 as necessary for the unfilled 

ponltions.  (The computational cost of pivoting on single- 

tons is almost nothing, and feasibility is improved if all 

the original right-hand sides are non-negative.) 

F basis: A full basis was produced by this procedure: 

first, an S basis was chosen; subsequently, each column 

of the tableau was examined, and pivoted into the basis if 

it had a non-zero entry corresponding to any unfilled batils 
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posltlon. The only basis positions left unfilled by this 

procedure are those corresponding to redundant constraints. 

Naturally, the resulting basis is not lllcely to be primal 

or dual feasible. Other procedures for obtaining a full 

basis have been tried but not yet fully evaluated; they do 

not seem to offer much advantage over the above. 

Table 4-1 describes the bases resulting from the use 

of procedures S and P. All the data are proportions, the 

number of variables in a given category being divided by 

the number of constraints in the problem. The last two 

lines constitute the proportion of Infeasibllitles in the 

starting basis. Kote, however, that artificial variables 

initially at zero level tend to become non-zero before 

they are eliminated, so that for an S basis the total 

number of artificials Is Ih« better measure of Infeasi- 

billty. 

Problem 

Table t-1 

Starting Basis Characteristics 

ID      2A      IE      1A      5A 

Singletons used .19 .87 

Positive artificials .81 .00 

Zero artificials .00 .13 

Negative variables .41 .00 

(S basis) 

.19 .30 1.00 

.19 .70 .00 

.61    .00    .00 

(P basis) 

.42    .30    .00 

10       IP       2B      IB 

.90     .65 

.10     .35 

.00     .00 

.86 .29 

.05 .60 

.08     .11 

.23    .26    .10    .46 
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Note that the proportion of infeaslbllltles in the 

P  basin runs a little more than half the proportion In 

the S baals. We view this P« accountlnf, for the advan- 

tape, to be seen bulow, of the F basis over the S basis. 

We are mainly Interested in the number of simplex 

method Iterations required to obtain the first feasible 

solution aitor the starting basis has been constructed, 

(in Sec. IX the effect of the work required to produce 

the startinp; basis, as included in the total work to solve 

the problem, is considered.) Bases N and S have beer, 

used with two algorithms: the ordinary procedure and the 

"ratio pricing" procedure, described in Sec. VI. The 

results are summarized in Table h-2.    The first line com- 

pares basis S (run 21) with basis N (run 5» used as the 

base), for the ordinary algorithm; the second line com- 

pares basis S (run 6) with basis N (run 8, used as base) 

for the ratio pricing algorithm. The ratios thus repre- 

sent the proportion in which the number of iterations In 

Phase One is decreased by using an S basis rather than an 

N basis. 

Table 4-2 

S Basis Compared to N Batils for Two Algorithms 

Problem ID   2A  IE  1A 5A  10  IP  2B  IB Avg. 

Ordinary algorithm    .89  .00 .69 .61 .00     .51 M    .83 .50 

Ratio pricing       .86  .01 .85 .82 .00 Ao    .58 .83     .S1» 
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Evldently uae of an S baa is entails, on the average, 

a saving of about 48^ In the number of Iterations required 

for Phase One. 

Comparison of bases S and P has been made In each of 

three algorithms, with the number of Iterations for basis 

S taken as the base data:  the ordinary algorltiun (runs 

21 and 39» respectively); the sequential procedure (runs 

31 and 36); and the leaat-lnfeaslblllty procedure (runs 

33 and 37). The last tvio procedures are discussed In 

Sec. VI. Table 4-3 summarizes these, omitting problems 

2A and 5A because their starting S and F bases are feasible. 

Table 4-3 

F Basis Compared to S Baals 

Problem ID IE 1A 10 IP 2B IB Avg 

Ordinary algorithm • 32 • 71 .48 1.62 .05 • 69 .53 .63 

Sequential • 37 1.00 .37 2.43 .11 1.07 .53 .84 

Leaat-lnfeaslblllty .33 .94 ■ 35 2.27 .09 •93 • 78 .81 

The overall average of these proportions Is 0.76, pre- 

dicting a saving of 2456 In use of an P basis rather than 

an S basis. 

We conclude that In the absence of other knowledge of 

the problem, an F basis should be used.  Some linear pro- 
to) 

grammlng routinesw/ make it possible to use a mixed 

procedure, entering a known partial basis and subsequently 

completing It In an arbitrary manner. 
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We may try to predict the number of Iterations Phase 

One requires using the ordinary algorithm. Each entry In 

Table 4-4 Is obtained by averaging, for all problems, the 

number of Iterations taken using the basis N, S, or P 

divided by one of three possible measures of problem dif- 

ficulty—the number, M, of constraints, the number of 

non-singletons, or the number of Infeasibllities in the P 

basis. Thus, for example, the number of iterations re- 

quired using an S basis is expected to be .78 M. The 

coefficients of variation are given in parentheses. It 

is disappointing that the number of constraints is a bet- 

ter basis for prediction than the more informative measures, 

Table 4-4 

Phase One Iterations vs. Measures of Problem Difficulty 

Measure 

Number of Number of negatives 
M non-slngletons in F basis 

N 1.69 (.3) 

S .78 (.8) 

P        .56    (.6)      2.07   (1.1) 2.12      (.8) 
^Bas"^ S        •78    <-8>      2-13     (-9) 
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V.     THE FEASIBLE SOLUTION 

In general,   Phase One,   the task of obtaining a first 

feasible solution.   Is accomplished by employing the simplex 

method to minimize some measure of the Infeaslblllty of a 

solution.    The five procedures studied here employ four 

different measures of Infeaslblllty.    In all of them the 

measure constitutes an objective function whose reduced 

costs are calculated so that the choice of pivot column 

can be made by the ordinary rule.     In all but the "ex- 

tended composite" algorithm the ordinary rule of pivot row 

selection is usud. 

The ordinary procedure is described in Sec.  III. 

The extended composite procedure*     ' differs from 

the ordinary in choice of pivot row.    After the pivot 

column has been chosen in the ordinary way, the pivot row 

is selected so that the sum of infeasibilities after 

pivoting will be minimized;   variables are allowed to change 

sign freely.    Thus    I    is defined by    60 - bj/a-,      „^epe 

B0    minimizes    l^flb.  - 6 a,j|   : b^ - 9 a^   is infeasiblel 

In the sequential procedure,   the infeaslblllty is 

corrected one component at a time,   in order.    At any 

iteration, let    i0    be the least    1    for which some    b      ■ 

Is  infeasible,  and    x      the corresponding variable.    Ttie 

objective for minimization is defined as    x      if position 

i0    is artificial and   b.      is positive, or as    -x     if 
o 

b,       is negative.    {The reduced cost for column     1    will 
o 
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then bo  Just    a,   .    or    -a.   ,   .)    EUrlng uhe procedure, 
oJ oJ 

row    1      will be made feasible,   feaalblllty on the previous 

rows being oreserved. 

The least-infeaslblllty procedure Is like the sequen- 

tial,  except that at each iteration the index    1      Is 

taken so that    x      is minimal among all infeaslble vari- 

ables;  the index may increase or decrease. 

The fudge procedure,  but not Its nan-e,  is due to aass.w  ' 

A problem having negative solution values is augmented by 

a single artificljI variable and subjected to a trans- 

foFination yielding non-negative solutions for the augjnented 

problem.    Specifically, the tableau is augmented by a 

column containing the entry    -1    in each row having 

b1< 0   and zeros elsewhere;  and the desired tableau Is ob- 

tained by pivoting In the    I        entry of the added column, 

where    b. = min.  b.   .    Subsequently the sum of all the 

artificial variables Is minimized using the ordinary 

algorithm; when it has been reduced to zero, a feasible 

solution is at hand.    (Of course,  other means of getting 

feasible could be used once the negativity has been re- 

moved.) 

Table 5-1 lists the runs done using these five pro- 

cedures, indicated at the left. The starting basis used 

is listed at the top. 

*Pp.  120-125. 
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21 39 

(21) 38 

31 36 

33 37 

(21) 32 

Table 5-1 

Feasible Solution Runs 

N 

Ordinary algorithm 5 

Extended composite algorit.un     (5) 

Sequential algorithm 

Least-lnfeasibility algorlthni 

Fudge procedure (5) 

Runs indicated in parentheteb were not done, since 

the same results would have been obtained as in the run 

whose number is given. 

Tables 5-c and 5-3 give the reaulUs for these pro- 

cedures, for bases S and P, relative to the ordinary 

procedure. The  last line of each table is the proportion 

of infeasibllities in the starting basis for each problem. 

Table 5-2 

Phase One, S Basis, Relative to Ordinary Algorithm 

Problem ID        IE   1A   10   IP   2B   IB   Avg. 

Sequential .96  .9^ 1-52 1.00  .98  .97 1.04   1.06 

Least-i.ifeasi-     1.08 I.03 1.36 1.05 1.24 1.12  .94   1.12 
billty 

Proportion infeasi-  .81  .19  .70  .10  .35  .05  .60 
billty 

The amount of infeaslbllity does not seem to affect 

the relative efficiencies of these methods much, although 

it does affect the totrl work done, as the data for runs 

21, 31, and 37 in the Appendix, or those of Table 4-4, show. 
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T«ble 5-3 

Fhaa* On«, F Bwla, Relativ* to Ordinary Algorithm 

Problem                               ID       II        1A 10 IP 2B IB       Avg. 

Extended oanpoait«    1.00   1.08   l.M .65 1.00 1.04 1.01       1.03 

Sequential                   1.12   1.33    1.17 1.50 2.00 1.51 1.06       1.39 

Leaat-lnfeaal-           1.12   1.37   1.00 l.»7 2.00 1.51 1.39       IAX 
blllty 

Fudge                             1.25   1-06    1.25 1-00 2.00 1.34 1.01       1.27 

"blllty0" lnf'"i'     .»1      -»2       -30 .23 .26 .10 .46 

The results pretty well establish the ordinary pro- 

cedure ttJ superior in getting feasible. Its objective is 

responsible, since the minimization algorithm is the same 

in all the runs. It seems that by moving in a direction 

tending to minimize the sum uf all the infeasibilities we 

give more chance to a number of infeasibilities to leave, 

while the sequential and least-feasible procedures, con- 

centrating on a single variable at a time, are too single- 

minded. Since several negative infeasibilities can be 

removed in one iteration, while only one artificial variable 

can, it is reasonable that the difference Is more decisive 

for F bases than for S bases. 

The extended composite procedure is somewhat disap- 

pointing. It might work better if, at the expense of 

considerably more calculation, the pivot column were chosen 

by the same criterion as is the pivot row. 
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VI.  THE OPTIMAL SOLUTION 

Of greatest Interest to the ordinary user Is the amount 

of work required to solve a complete problem.  In this 

section six algorithms are compared In the number of Iter- 

ations required to obtain an optimal solution. All but 

one of these are designed to handle artificial variables; 

for them, the ordinary Phase One objective—the sum of all 

Infeaslbllltles—Is used; this was found most efficient 

In Sec. V. Unless otherwise noted, each procedure usen 

the same method for minimizing Its objective In Phase line 

as It does In Phase Two, only the definition of the ob- 

jective changing between the phases. Similarly, each 

procedure (except the "symmetric'') uses the ordinary choice 

of pivot row. They differ primarily In the manner of 

choosing the pivot column. 

The ordinary procedure was described In Sec. III. 

Ttie  positive-normalized procedures (PN1 and PN2) can 

be viewed as representative of those proposals which aim 

at eliminating the effects of bad scaling of the problem 

data by dividing the reduced costs, used In choosing the 

pivot column, by some combination of the coefficients 

a.. . The first of the two considered here, proposed by 

Dlckson and Frederick/ ' uses the formula d, ■ 
p J 

2    2      + 
CJ / ^CJ + rl alJ ), where a^. Is the "positive part" of 

a... ,  choosing the pivot column as that J for which d. 

is maximal for c. < 0 . The procedure PN2 Is essentially 
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this, using instead the formula d . = c . / 5^ a., , , which 

t:ivcs the sa/ne result. 

The PN1 procedure employs the slightly simpler formula 

d . = c . / j:1 a, . , with the pivot column chosen for mini- 

mal d. . 

The createst-change procedure was described long ago/ ' 

but has been little used. That column is chosen which, 

after pivoting, will give the greatest decrease in the 

value of the objective; it la the J which minimizes the 

expression c. min^b./a. , : a^, > 0}  for the change of 

the objective. 

The ratio r.'iclng procedure was suggested informally 

by Markowitz some time ago. It differs from the ordinary 

procedure only in Phase One. Letting w. be the reduced 

cost for the infeaslbility objective then, and c. be 

the reduced cost for the proper objective, the pivot 

column J is chosen so as to maximize cVw. for w.< 0 ; 

we obtain the largest possible improvement in the proper 

objective per unit change of infeaslbility.  It may be 

viewed EIS an application of parametric linear programming:*-" 

defining 0*   at each iteration as the largest ßi   such 

that c, + ^ w. > 0 for all w < 0 , the pivot column 

is chosen so as to increase ji* .    Evidently when 0* 

becomes sufficiently large we have all w. > 0 , and Phase 

One is ended. It turns out that almost all c. are then 

non-negative, too, so that Phase Two Is quite short. The 
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alm of the procedure Is to obtain a first feasible solu- 

tion which Is nearly optimal; the data of the Appendix 

for run 6 show that It does this well. 
(12) 

The symmetric procedure of Talackox  ' Is employed 

only with a full basis; It may take either "primal" or 

"dual" simplex method steps.  For one Iteration: Among 

those columns with negative reduced costs and those rows 

whose basic variables are non-negative, a potential pivot 

Is determined using the greatest-change procedure as de- 

scribed above; and among columns with positive reduced 

costs and rows with negative variables, a potential pivot 

Is determined using the dual of the greatest-change pro- 

cedure (for which the greatest Increase of the objective 

Is sought). That pivot 1B used for which the magnitude 

of the objective change Is greater. If a step of the first 

kind Is taken, all non-negative baalc variables stay non- 

negative. The procedure does not always terminate In a 

(12») 
solution of the problem;*  ' hut It did for the test 

problems. 

The parametric procedure of Dantzlg* ^' Is likewise 

employed conveniently only with a full basis, and takes 

either primal or dual steps. It la generally like the 

symmetric procedure, but Its termination Is known. At 

the beginning of procedure a column of right-hand aide 

*P. 10. 
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changes Is added to  le tableau so th^.t ut&t.  the column 

Is multiplied by an Initial value ((>o > 0) of the param- 

eter J? and added to the ourrent n«alü »«iutlon the 

result will be non-nepatlve; and Llkewi.»« a row of coat 

changes Is added to the tableau ao that when multiplied 

by the initial value of p( and added to the current re- 

duced costs, the result will be non-negative.  In this 

manner a problem Involving the single parameter ji   has 

been defined which is both primal and dual feasible when 

p = jD     and is equivalent to the original problem when 

jS = 0 .    The procedure consists in then reducing fl 

using the pivot choice rules of the parametric linear 

programming algorithms,*'*' ■'' which will give a sequence 

of primal and dual feasible solutions for a decreasing 

sequence of values of p    terminating in zero. 

Table 6-1 compares all these, taking the ordinary 

procedure as the base (run 21). 

Of the runs with singleton basis, the positive- 

normalized procedures are outstanding, and overall the 

greatest-change procedure with full basis is best. Un- 

fortunately the positive-normalized procedures nave not 

yet been tried with full bases; they might perform even 

better. Incidentally, the data of the Appendix show that, 

with the natural exception of ratio pricing, the dif- 

ferences among the procedures are reflected in Phase One 

in about the same way as in the entire process. 
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The data of Table 6-1 allow the symmetric and 

greatest-chance procedures to be compared directly with 

the ordinary procedure with full basis. Using run 39 as 

base, the averages and coefficients of variation obtained 

are: symmetric algorithm, .92, .3; greatest-change 

algorithm, .78, .3; parametric algorithm, 1.25, .2. The 

relative efficiencies of these procedures are not changed 

much by calculating them from the different base run. 

It is of oonsiderabls interest to find some means of 

predicting the work needed for a problem about which 

little is known. In Table 4-4 it was found that the 

number M of constraints was the beat guide of those 

studied to the number of iterations for Phase One; we shall 

use it also in connection with the total Iterations re- 

quired. Table 6-2 thus lists the number of iterations 

required to solve each of the problems using the ordinary 

algorithm divided by M . It would appear that rule of 

"2M iterations" from folklore is fairly good when a 

singleton basis is used. 

Table 6-2 

Iterations/Constraints for Ordinary S basis (run 21) 

ID   2A   IE   1A   5A   IG   IF   2B   IB   avg.   c.v. 

2.00 1.67 1.71 1.27 1.09  1.29 1.83 1.18 3-33  1.71    .4 

The corresponding data for the algorithms of Table 

6-1 can be found by multiplying the entries of 6-2 by 

those of 6-1. The averages thus obtained appear in Table 

6-3- 
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Algorlthm 

Table 6-3 

Summary of Iteration.. 

Run Average 

Singleton basis 

Ordinary 
PN1 
PN2 
Greatest-change 
Ratio pricing 

Ordinary 
Symmetric 
Greatest-change 
Parametric 

21 1.71 
10 1.24 
14 1.24 
15 1.36 
6 1.50 

Pull basis 

39 1.39 
ko 1.12 
41 .98 
59 1.60 

ta 

c.v. 

.4 

.2 

.2 

-.1 

.4 

.5 

.2 

.3 

A more detailed examination of the data seeirs to 

show that the dependence of the number of Iterations on 

M could be better expressed by a formula of the form 

1c M  , where b Is slightly less than one, but this Is 

not clear. Using a singleton basis an estimate of between 

M and 3M' Iterations will almost always be correct. 
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VII.     SUBOPTIMIZATION 

Versions of suboptlmlzatlon have been used for some 

time in linear prot;raimnlng routlnea bothered by small 

core size,  but the advantages of a version of It for routines 

fur which core size is no particular handicap were first 

exploited by D.  M.  Smith.^     '     As used here, the course 

of the solution of a problem consists of a number of 

passes,  at the beginning of each of which some number    L 

of nonbasic columns Is selected as a set of candidates  for 

pivoting (those having the    L   minimal reduced costs are 

chosen).    During the pass no other nonbasic columns are 

considered; simplex method iterations are performed using 

the selected columns until the objective has been minimised 

on that subset.    (A basic column v;hich becomes nonbasic 

during the pass is not further considered.) 

The number    L   of candidates is an Important para- 

meter;  vlues of 2, 3,   s.  and 0 were used here.    During a 

pass,  any of the various means of selecting a pivot column 

discussed previously might be used in minimizing the ob- 

jective on the candidates.    Three were tried here:    the 

ordinary procedure of minimal reduced cost; the greatest- 

change procedure; and the procedure PMl. 

Both the number of iterations and the number of passes 

required to solve a problem are of interest.    In the 

table    below, the numbers required are all compared with 

the number of iterations used by the ordinary simplex method 
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(run 21), which would be the number of passes for any of 

the algorithms for L = 1 . Only the averages and coefficients 

of variation are ßiven for those runs; the Individual data 

fluctuate considerably less than in most of our experi- 

ments. An interesting feature of the raw data not re- 

flected in the averages is that the greatest-change 

procedure commonly requires fewer iterations under sub- 

optimization than does the ordinary procedure without It, 

which is generally not the case for the other methods. 

Run 

Table 7-1 

Suboptimizatlon Runs Compared to Ordinary Algorithm 

Algorithm   L    Iterations 
average    c.v. 

.2 

.2 

.2 
• 3 

.2 

.2 
• 3 
• 3 

.1 

.2 

11 
29 

ordinary 2 
3 

1.15 
1.28 
1.26 
1.31 

1? 
11 

greatest- 
ohange 

ii 

2 
3 i!oa 

1.08 
1.13 

42 
43 

PN1 
n 

2 
3 

1.15 
1.22 

Passes 
average c.v 

.72 .2 

.60 .2 
• 45 .2 
.37 .4 

.72 .2 
• 59 .2 
.45 .3 
.40 • 3 

• 72 .2 
.58 .2 

The term "pass" arises from the fact that it Is only 

necessary to consult the data for the entire problem once 

during a pass; the data which have to be retained for the 

subsequent suboptimizatlon are much fewer. This fact 

makes it particularly valuable in product form routlr.es 



-30- 

and those which use tapes extensively.     (The three main 

forms of the simplex method are discussed In Sec. VIII.) 

The significance of the statistics above depends on the 

form of routine used.    In the product form,   the total 

work done cepends largely on the  number of passes;  In the 

standard form,  on the number of Iterations;  and the ex- 

plicit  form Is  Intermediate.     Thus suboptlmizatlon Is of 

value In the product form even for all-ln-core routines, 

but not in the standard form.    Three production linear 

programming routines now use It in the manner described. 

They are all product form routines,  one using the ordinary 
(Q) 

algorithm with    L - 2,w/  another the greatest-change 
(14^ algoriUim with   L •> 2,N    ' and the third has options for 

either algorithm and any    L    up to 5, (15) 
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VIII.  OPERATIONS AND FORMS 

So far we have been concerned only with the number 

of Iteratlonr required io  solve a problem. A better 

guide to the computational efficiency of a procedure is 

the number of floating-point arithmetic operations per- 

formed—the work which must be done no matter how the 

algorithm is Implemented. While loclc and bookkeeping 

time are usually appreciaDle, and vary between different 

algorithms sind different forms of the simplex method, it 

is precisely in such non-arithmetic work that computers 

and programming systems differ the most. Having program- 

med each of the procedures studied here as economically 

as we could from the standpoint of arithmetic, we feel that 

the results on arithmetic work come close to a machine- 

independent measure of efficiency. 

Although it would be possible to count separately 

each elementary operation, It turns out that there are 

only three combinations or elementary floating-point 

operations used significantly often in each of the major 

subdivisions of an Iteration: addition and multiplication; 

division and subtraction; and addition alone.  Each of 

the following three groups is thus called one operation: 

1 floating add and 1 floating multiply (l?.1)) 

1 floating divide and 1 floating add (19-J0 

3 floating adds (19.2), 
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The averace number of 7090 cycles  taken by each combi- 

nation is given In parentheses.    While some error Is made 

In considering all these equivalent,   It la very small, 

because the first combination accounts for almost all the 

calculations.     In all cases  (except for a portion of the 

reverse-transformation calculation in the product form) 

an operation is counted only when both operands are non- 

zero. 

There are many ways of calculating the data required 

for the steps of the simplex method.    In all of them the 

data used in the ordinary procedure are obtained, but in 

different ways.    The three main forms of the method are 

described below in outline;  the details may be found in 

the literature.    ''    In considering the number of opera- 

tions performed in one iteration in any form,  it is con- 

venient to have a priori estimates in terms of    M   (the 

number of constraints),    N (the current number of variables), 

and M + K (the total number of rows of data).    In the 

formulas below, factors of proportionality    6    between 

zero and one reflect the fact that operations involving 

zero data are not counted;  and quantities of order smaller 

than   Vr    are disregarded. 

The standard form is done Just as the ordinary pro- 

cedure is described in Sec. III. Pivoting in the tableau 

is most of the work (requiring    91(M+K) (N-M)    operations). 

Boti» forms of the "revised simplex method" calculate 
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needed items of the tableau by multiplying par^s of the 

original matrix A by parts of the inverse. the Inverse 

of the M + K-order matrix consisting of the basic 

columns of A . The reduced costs are obtained by 

multiplying A by the prices, that row of the inverse 

corresponding to the objective row of A (8o(M + K) (N-M) 

operations); the selected pivot column of the tableau is 

obtained by multiplying the appropriate column of A by 

the inverse (the number of operations required for this 

and the remaining steps differs for the two forms); the 

pivot row is selected as usual; and pivoting is done both 

in the Inverse and the current solution. 

In the explicit form, or the "revised simplex method 

with explicit form of the Inverse," the inverse Is a 

square M + K-order matrix, all of which Is pivoted in 

at each Iteration. Pivoting requires 9j,(M + K) 

operations, and the prior multiplication for the pivot 

column requires 9o(M + K) operations. 

In the product form, or the "revised simplex method 

with product form of the Inverse," the inverse is main- 

tained as a sequence of transformations, each of which, 

having at most M + K nonzero entries, constitutes the 

nontrlvial portion of the pivot column of the tableau as 

of some previous iteration. Applied appropriately, these 

transformations accomplish the work of matrix multipli- 

cation required by the revised simplex method. In a 

pivot step these data are not altered but are augmented 
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by one mor'ü trans format Ion. Their total number Is 

Conorally somcwliat loss than  (M + K) , and most, but 

not all, or them are used once In obtaining the prices 
2 

(e^K + K)c operations) and the pivot column  (^(M + K) 

operations).  The number of accumulated transformations 

Is periodically reduced by "reinverplon." the reconstruc- 

tion of a product-form inverse from A in a minimal 

sequence of pivots. The routines used here reinvert auto- 

matically at those points they determine will minimize the 

total operation count for the calculation. 

In summary, the formulas of Table 8-1 indicate the 

dependence of the number of operations per Iteration on 

problem size. 

Table 8-1 

Number of Operations per Iteration 

Standard form    91 (M + K) (N - M) 

Explicit form    92 (M + K) (N - M) + 6, (M + K)2 + 6^ (M + JC)2 

Product form     92 (M + K) (N - M) + e5 (M + K)
2 + 6g (M + K)2 

It is beyond the scope of this study to discuss the 

factors 6 of these formulas in detail. They will be 

used instead as ßuides to the scaling of our operation 

counts. Since for our problems N Is closely propor- 

tional to M (N/M ranges from 1.6'/ to 3.43, averaging 

2.31 with coefficient of variation 0.27), each of the 
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formulas has, approximately,  (M + K)  as a commcn 

factor. Thus, comparative data for the three forms can 

be obtained as follows: for each problem, divide the 

total number of operations required to solve it by the 

iiumber of Iterations, and divide the result by (M + K) 

The data of Table 8-2 were obtained in that way; for all 

forms, the ordinary simplex algorithm was used, and an 

S basis. 

Table 8-2 

Operation! par Itaration / (M * K)2 

Problam ID  2«  IE  1A  5A  10  IP  2B  IB  avg.  c.v. 

Standard form     .88 3.00 2.11 .1» 1.28 .79 .76  .59     1.23   .? 
(run 12) 

gxpllclt form     .71  .95 -77 .«9  -S* -31  -38 .29 .67  .«17   .1 
(run 21) 

Product form     .56 1.00 .5* .32  .115 .27 .25 .1» .26  .12   .li 
(run 56) 

The decrease of the ratios with size of problem is 

noteworthy; It is probably due to the decrease of the 

proportion of nonzero matrix entries. Table 8-3 makes a 

more direct comparison of theae data, using the explicit 

form run as a base. Note that the relative efficiency 

of the product form tends to increase with the size of 

problem, owing, we think, to Its greater ability to take 

advantage of the lower density of nonzeros. 

Table 8-3 

Standard and Product Compared with Explicit Kon- 

Problam ID      2«      IE     1ft      5ft      10      IP      2B      IB      avg.      c.v. 

Standard form 1.28 4.67 3.03    .83 2.30 2.57 2.0<t 2.63 2.42    .   A 

Product form .82 1.05    .7»    .6»    .79    .86    .67    .»5    .»3    .71        .3 
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IX.  ALGORITHMS COMPARED BY OPERATIONS 

The algorithms of Sec. VI may finally be compared In 

the total number of operatlona they require to solve a 

problem. In Table 9-1 they are all compared with the 

ordinary algorithm In explicit form (run 21). With the 

exception of that procedure, each algorithm given has 

been run in that form of the simplex method beat suited to 

it; the ratio pricing and the greatest-change (with F 

basis) procedures are omitted because they were not. 

Table 9-1 

Various Algorlthns Compared with Ordinary,  Explicit 

ProMera ID      2*      IE     1A      5A      10      IP     2B     IB     awg.      o.v. 

Singleton baala 

FNa--atandard .75    8.11 2.12    .57 1.5* 1.2» 1-38 1.37 l.*3 •* 
run 10 

Wß-atandard 1.07    J.53 ?.8H    .53 1.79 1.5? 1.18 1.82 1.66 .1 
run 11 

Oreateat-ehange       1.15    3-66 3-72    .33 2.37    .99 1.66 2.36 ü.03 .6 
atandard    run 15 

Ordinary—product      .82    1.05    .71    M    .79    .86    .67    .15    -13    -71 .3 
run 50 

Pull baala 

Sywaatrlc atand-        .57    1.80 6.01    .17 2.818.611.011.12 8.17 .8 
ard    run 10 

Ordinary—product      .63    1.16    .81    .11    .89    .86    .25    .37    .38    .68 .5 
run 55 

We think that these figures constitute the best 

overall assessment of these alternative algorithms from 

the point of view of calculation needed. The product form 

of the ordinary algorithm seems definitely superior, with 
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use of a full basis probably being worthwhile for the 

larger problems. 

We may try to predict the operation count for an 

unknown problem of given size. In Table 9-2,   the counts 

of run 21 have been scaled In a manner intended to elimi- 

nate most of the influence of the size of the problem. 
p 

Using the factor (M + K)  as in Table 8-2 to scale the 

count per Iteration, and the factor M aa In Table 6-3 

to scale the number of iterations, we obtain the quotients 

of 9-2. The corresponding quotients for the other runs 

can  be obtai:ed by multiplying those of 9-1 by these 

numbers; the averages and coefficients of variation for 

those ratios are given in Table 9-3• 

Problm 

Table 9-2 

Operation» / M(M ♦ It) for Ordlniry Explicit 

ID   2A   II   1A   3*   10   IF   SB   IB   »vg. 

l.M 1.58 1.32 .62  .59  .40   .70 .3»  2.22 1.02 

c.v. 

.6 

T»bl« 9-3 

Opemiona / M(M + K)2 for Other Rune 

Algorithm 

PN1 
PIC 

Oreeteat-change 
Ordinary 
Synmetrlc 
Ordinary 

Pom Baa la Run 

product 
atandard 
product 

10 
14 

I|0 
55 

Average 

1.36 
1-59 
2.04 

• 73 
2.57 
.73 

C.V. 

.8 

.9 
1.0 
.5 

1.2 
.9 
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Sincc!  In practice    K    Is usually 1,  we can r.ay that 

arounri     H      operations  arc  required to solve  a linear 

procrammlne problem.     A rouch minimum for problems  of no 
■a •? 

more than some 100 constraints Is 0.3 MJ  ,   and 2 MJ Is 

a rouch maximum for smaller problems.  A count of more than 

3 tr    indicates an uncommonly hard problem or a rather 

poor algorithm. 
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X.  CONCLUSION 

Three ktnda of data have been used above:  Iterations, 

operations, and passes. We have come to the view that 

tteratlonq alone Is the least Informative: on the one 

hand, the operation count measures the total work of a 

routine, and on the other passes measure the amount of data 

handled.  Of course, except for those of Sec. VII, eub- 

optlmizatlon Is not used In any of the routines studied, 

so that In general the number of passes la equal to the 

number of Iterations, which Is the number we usually cite. 

The results of Sec. IV show that use of a full basis 

will reduce the iterations taken in Phase One. (in Sec. 

IX, however, we found that It is of little value in re- 

ducing the operation count for the most efficient procedure.) 

It appears that there is no excuse for using an entirely 

artificial basis. 

In Sec. V we failed to find any measure of Infeasi- 

billty with which to conduct rhiic Or.c ■■.'h1',h wn-rks better 

than the ordinary measure—the sum of all the infeasibilitles, 

TSie results of Sec. VI show the positive-normalized 

procedures best in terms of iteration count, and that the 

full basis is good for the overall problem. The first 

conclusion is consistent with the interesting results of 

Kuhn and Quandt,*  ' who have experimented with several 

pivot-column selection procedures on a large number of 

randomly-generated linear programming problems of special 
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type liavlnc up to 25 constraints.  In the only place where 

their results can be matched with ours, we agree In 

ordering these procedures In Increasing effectiveness In 

Iteration count:  ordinary, greatest-change, and positive- 

normalized. Our data suggest M and 3M as bounds for 

the number of Iterations to solve a problem starting from 

a singleton basis. 

The extent to which suboptlmlzatlon will be of value 

In a routine depends considerably on how Its data-handling 

Is organized. Section Vil shows that It can be used with 

little harm and under some circumstances with benefit to 

the total computational labor. 

The comparison of operations per Iteration In Sec. 

VIII shows pretty definitely that the order of the three 

main forms of the simplex method In Increasing efficiency 

is: standard, explicit, product. The fact that those 

algorithms which are better than the ordinary In Iterations 

need data which are conveniently obtained only in the 

standard fonn makes them less attractive from the point of 

view of operation count; Sec. IX .:hows that the ordinary 

algorithm in product form leads the rest. There are other 

considerations, however, for general uses of a linear pro- 

gramming routine, which are hard to evaluate properly but 

which argue for the standard form: in that fonn most of 

the data needed for the usual postoptimal analyaea—re- 

duced coots, etc.--are Immediately available and need not 

be especially calculated. 
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An Important fact about the product form, whose 

detailed study Is beyond the scope of this report. Is that 

the product-form Inverse Is extremely compact for problems 

of low density. This fact has considerable bearing on the 

choice of a routine for larger problems. SHARE problem 

4A, having 245 constraints, can be solved with an all-ln- 

cc 

of core. A similar routine using the explicit form would 

require 75,000 words, and using the standard form, 118,000 

words. 

At this time, we feel that a product-form routine 

employing the ordinary or the greatest-change algorithm 

with sub-ptlmlzatlon, with option for using a full basis, 

will pull together the best features of the procedures we 

have studied so far. 

It may seem disappointing that our results have not 

allowed a more decisive ordering of the proposals studied. 

In part, of course, this Is due to our having selected the 

more promising posslbllitleH from a larger number of candi- 

dates; but it may also be the case that, as linear programming 

is presently understood, it is not possible to do a great 

deal better than some of these procedures do. A linear pro- 

gramming method has two parts: find the optimal basis, and 

calculate the optimal solution. If the optimal basis were 

known, it would still in the general case require some 

■rVr    operations to solve the linear equations thus Identified 
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(although a product-form method would do much better for 

problems, like ours, having a low density of data).  Since 

some of our procedures do the whole Job In about Vr 

operations, there does not seem to be an enormous amount 

of room for improvement. 
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